My Publications
-
Dashti, H., Chen, M., Smith, W. K., Zhao, K., & Moore, D. J.
P. (2023). Rethinking Ecosystems Disturbance Recovery: what it was
or what it could have been? Global Change Biology. Manuscript under
review.
-
Dashti, H., Smith, W. K., Huo, X., Fox, A., Javadian, M.,
Devine, C. J., Behrangi, A., & Moore, D. J. P. (2023). Underestimation
of the impact of land cover change on the biophysical environment of
the Arctic and Boreal Region of North America. Environmental
Research Letters. Manuscript under review.
-
Enterkine, J., Dashti, H., Caughlin, T. T., & Glenn, N. F.
(2023). Applied soft classes and fuzzy confusion in a patchwork
semi-arid ecosystem: Stitching together classification techniques to
preserve ecologically-meaningful information. Remote Sensing of
Environment. Manuscript accepted for publication.
-
Luo, M., Li, F., Hao, D., Zhu, Q., Dashti, H., & Chen, M.
(2023). Uncertain spatial pattern of future land use and land cover
change and its impacts on terrestrial carbon cycle over the
Arctic–Boreal region of North America. Earth's Future, 11,
e2023EF003648. https://doi.org/10.1029/2023EF003648
-
Dashti, H., Smith, W. K., Huo, X., Fox, A., Javadian, M.,
Devine, C. J., Behrangi, A., & Moore, D. J. P. (2022).
Underestimation of the impact of land cover change on the
biophysical environment of the Arctic and Boreal Region of North
America. Environmental Research Letters.
https://doi.org/10.1088/1748-9326/ac8da7
-
Fox, A. M., Huo, X., Hoar, T. J., Dashti, H., Smith, W. K.,
MacBean, N., et al. (2022). Assimilation of global satellite leaf
area estimates reduces modeled global carbon uptake and energy loss
by terrestrial ecosystems. Journal of Geophysical Research:
Biogeosciences, 127, e2022JG006830.
https://doi.org/10.1029/2022JG006830
-
Ilangakoon, N., Glenn, N. F., Schneider, F. D., Dashti, H.,
Hancock, S., Spaete, L., & Goulden, T. (2021). Airborne and
spaceborne lidar reveal trends and patterns of functional diversity
in a semi-arid ecosystem. Frontiers in Remote Sensing, 2.
https://doi.org/10.3389/frsen.2021.743320
-
Cawse-Nicholson, K., Townsend, P. A., Schimel, D., Assiri, A. M.,
Blake, P. L., Buongiorno, M. F., et al. (2021). NASA’s Surface
Biology and Geology Designated Observable: A perspective on surface
imaging algorithms. Remote Sensing of Environment, 257, 112349.
https://doi.org/10.1016/j.rse.2021.112349
-
Pandit, K., Dashti, H., Hudak, A. T., Glenn, N. F., Flores,
A. N., & Shinneman, D. J. (2021). Understanding the effect of fire
on vegetation composition and gross primary production in a
semi-arid shrubland ecosystem using the Ecosystem Demography
(EDv2.2) model. Biogeosciences Discuss., 2021, 1–20.
-
Dashti, H., Pandit, K., Glenn, N.F., Shinneman, D.J.,
Flerchinger, G.N., Hudak, A.T., de Graaf, M.A., Flores, A., Ustin,
S., Ilangakoon, N., & Fellows, A.W. (2021). Performance of the
ecosystem demography model (EDv2.2) in simulating gross primary
production capacity and activity in a dryland study area.
Agricultural and Forest Meteorology, 297, 108270.
-
Dashti, H., Spaete, L., Roberts, D., Enterkine, J., Flores,
A. N., Ustin, S. L., & Mitchell, J. J. (2019). Regional-scale
dryland vegetation classification with an integrated
lidar-hyperspectral approach. Remote Sensing, 11(18).
-
Pandit, K., Dashti, H., Glenn, N. F., Flores, A. N., Maguire,
K. C., Shinneman, D. J., Fellows, A. W. (2019). Developing and
optimizing shrub parameters representing sagebrush (Artemisia spp.)
ecosystems in the northern Great Basin using the Ecosystem
Demography (EDv2.2) model. Geoscientific Model Development, 12(11),
4585–4601. https://doi.org/10.5194/gmd-12-4585-2019
-
Ilangakoon, N. T., Glenn, N. F., Dashti, H., Painter, T. H.,
Mikesell, T. D., Spaete, L. P., Mitchell, J. J., & Shannon, K.
(2018). Constraining plant functional types in a semi-arid ecosystem
with waveform lidar. Remote Sensing of Environment, 209, 497–509.
-
Darvishzadeh, R., Matkan, A. A., & Dashti, A. (2011).
Inversion of a radiative transfer model for estimation of rice
canopy chlorophyll content. IEEE Journal of Selected Topics in Earth
Observations and Remote Sensing, 5(4), 1222–1230.